
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

1 Instructor: Daniel Llamocca

Unit 7 - Applications

DYNAMIC CIRCULAR CORDIC

▪ This is the 16-bit Circular CORDIC iterative architecture, where we perform run-time alteration of the FX format:

✓ [16 15]: It provides the highest accuracy, but the input, intermediate, and output values are restricted to [-1,1).

✓ [16 14]: It provides good accuracy, with the input, intermediate, and output values in the range [-2,2).

✓ [16 13]: It provides decent accuracy, with the input, intermediate and output values in the range [-4,4).

✓ [16 12]: It provides low accuracy. However, the input, intermediate and output values can be in the range [-8,8).

▪ A software application routinely jumps among the four configurations with different input data.
▪ CORDIC: The input, intermediate, and output data might require different number of integer bits depending on the input

data range. The more fractional bits, the higher the accuracy at the expense of decreased dynamic range (which might not
be acceptable in some circumstances). Fewer fractional bits allow for a higher dynamic range which allows some input data
to be properly processed, but at the expense of reduced accuracy.

FIXED-POINT CIRCULAR CORDIC WITH RECONFIGURABLE LUT

▪ This synchronous iterative circuit reads input data (16-bit Xin, 16-bit Yin, 16-bit Zin, and mode) when the s signal (a one-

cycle pulse) is asserted. After a number of processing cycles, the result (16-bit Xout, 16-bit Yout, 16-bit Zout) is ready and

it is signaled by done=1. Only after this, we can feed a new input data set (s=1).

▪ The figure depicts this circuit and how it was partitioned into static and dynamic (run-time alterable) components. The RP is

a reconfigurable LUT whose contents can be set via the parameter P (12,13,14,15) which is the number of fractional bits.

The VHDL code must be written (or rearranged if code is already available) in such a way that it exposes the Reconfigurable
Partition (RP) as a .vhd file.

0 1 1 0

4
0

16

Xin

4
0

Yin

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

Xout Yout

0 1

Zin

data_Z

Z

next_Z

Zout

16

i

e_i

LUT

di

CONTROL
Y

Z

s mode

done

di

s_
x
y
z

E i

+/- +/-

E E

16 16 16

2020

16

20 20

2020 20 20

16

20 20

s_xyz

2-i

a b b a a b

i

4

4

16

16

EEE

RP

P

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

2 Instructor: Daniel Llamocca

AXI4-FULL PERIPHERAL

▪ The figure depicts the peripheral (AXI4-Full Interface + CORDIC). The Static Region includes the AXI interface, while the

run-time alterable region is the LUT inside the CORDIC.

HARDWARE PARTITIONING: STATIC REGION AND RECONFIGURABLE PARTITION

▪ The figure illustrates the design structure of the embedded system partitioned into the Static Region and a Reconfigurable
Partition (RP). The AXI4-Full CORDIC peripheral (which includes the RP and some Static logic) structure is also shown.

✓ Reconfigurable Partition (RP): LUT_cordic_rp.vhd is the top file of

the RP. Here, the RP parameters are set as constants, and we can
modify them to create a variant (RM). There is only one modifiable
parameter: P (12,13,14,15) that allows for up to 4 RM variants.

✓ Static Region: the PS (and extra designs) is included here, as well as the static portion of the AXI4-Full CORDIC peripheral.

1
6

3
2

Eri

sel

3
2

3
2

0

1

16

16

1
6 Circular CORDIC

s doneresetn

Xi

Yi

Zi
mode

Xo

Yo

Zo

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

irden

owren

S_AXI_ARESETN
3
2

1
6 16

s

0

RP
P

i e
_
i

myAXIfifo.vhd

LUT_cordic_rp.vhd

LUT_cordic.vhd

Reconfigurable Partition

Parameters
are set here

Static Region

my_genpulse_sclr.vhd

myAXI_IP.vhd

mycordicfull_v1_0_S00_AXI.vhd

mycordicfull_v1_0.vhd

design_1_wrapper.vhd

Processing System (PS)

Processor System Reset

AXI Smart Connect

AXI4-Full Peripheral

mycordic_ip.vhd

my_rege.vhd

mycordic.vhd

my_mux2to1.vhd

my_rege.vhd

my_genpulse_sclr.vhd

my_addsub.vhd

fulladd.vhd

fsm_cordic.vhd

mybarrelshift_gen.vhd

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

3 Instructor: Daniel Llamocca

▪ After we verify the proper functioning of our partitioned design (as a non-PR project), we create the folder structure for the

Tcl-based flow for Partial Reconfiguration (see Notes → Unit 6). In this PR example, we have 1 RP and 4 RM variants that

are created by modifying the parameter P (RM 1: P= 12, RM 2: P=13, RM 3: P=14, RM 4: P=15).

TESTING SCHEME

▪ We use four for the CORDIC architecture: formats [16 15], [16 14], [16 13], [16 12].
▪ For each format, we have an associated data set: 4 sets of input values and 4 sets of output values. Each set corresponds

to two 32-bit input words (Xi&Yi, “00…0”&mode&Zi) and the expected two 32-bit output words (Xo&Yo, “00..0”&Zo).

F
IR

S
T

D
A
T
A
S
E
T

FX Format
[16 15]

Inputs Outputs
Xi&Yi “00…0”&mode&Zi Xo&Yo “00…0”&Zo

Rotation Mode
0x00004DBA 0x00006488 0xA57A5A7E 0x00000001

0x00004DBA 0X0000BCFB 0x3FFE6EDA 0x0000FFFE

Vectoring Mode
0x40002000 0x00010000 0x75D50000 0x00003B57

0x399A2666 0x00010000 0x7200FFFF 0x00004B43

S
E
C
O

N
D

D
A
T
A
S
E
T

FX Format
[16 14]

Inputs Outputs
Xi&Yi “00…0”&mode&Zi Xo&Yo “00…0”&Zo

Rotation Mode
0x000026DD 0x00002182 0xDFFD376A 0x00000001

0x000026DD 0x0000BCFA 0x376C2000 0x0000FFFF

Vectoring Mode
0x33333333 0x00010000 0x773CFFFF 0x00003241

0x20004000 0x00010000 0x75D5FFFF 0x000046DB

T
H

IR
D

D
A
T
A
S
E
T

FX Format
[16 13]

Inputs Outputs
Xi&Yi “00…0”&mode&Zi Xo&Yo “00…0”Zo

Rotation Mode
0x20002000 0x00000C91 0x1C8544D9 0x0000FFFF

0x136F136F 0x00003244 0xDFF91FFA 0x00000002

Vectoring Mode
0x1CCD1CCD 0x00010000 0x4312FFFF 0x00001920

0x1E662000 0x00010000 0x48AF0000 0x000019F4

F
O

U
R

T
H

D
A
T
A
S
E
T

FX Format
[16 12]

Inputs Outputs
Xi&Yi “00…0”&mode&Zi Xo&Yo “00…0”&Zo

Rotation Mode
0x20002000 0x00000C91 0xFFF44A85 0x00000002

0xE19AE400 0x0000F79F 0xBD95F124 0x0000FFFE

Vectoring Mode
0x18002000 0x00010000 0x41DF0000 0x00000ED7

0x1C001C00 0x00010000 0x4135FFFF 0x00000C8F

Test Procedure
▪ Extract the axicordic_dprsys.zip. It includes three folders and the software application:

✓ /axicordicfull_dr: Files for implementing the AXI4-Full Cordic Peripheral (where code was rearranged for PR process).

✓ /axicordicfull_dr_static: Files for implementing the static portion of the AXI4-Full Cordic Peripheral.

✓ /cordic16_dyn: Folder structure for implementing the self-reconfigurable system.

 We include the file /Synth/Static/top_synth.dcp, which is the Checkpoint of the Static Region.

 We include the file /Sources/xdc/top.xdc. It contains the RP constraints and the PS constraints.

top.xdc = design_1_processing_system7_0_0.xdc + fplan.xdc.

 System tested on ZYBO Z7-10 and Vivado 2019.1. For other boards, you need to generate your own top.xdc and

top_synth.dcp files as per the procedure in Embedded System Design for PSoC Tutorial → Unit 7: DCT 2D.

✓ test_cordic_rp.c, xtra_func.h: Software application to test the self-reconfigurable system.

▪ Vivado Tcl Shell: source design_complete.tcl -notrace. This will generate the bitstreams (.bit). Follow the procedure

in Embedded System Design for PSoC Tutorial → Unit 7: DCT 2D to generate the byte-swapped .bin partial bitstream files.

Copy them onto the SD card and rename them to cd16_12.bin, cd16_13.bin, cd16_14.bin, cd16_15.bin.

▪ Create an embedded system (cordic_16_drsys) for the AXI4-Full Cordic Peripheral (mycordicfull). Create an SDK project

(add the software files). Enable the ‘xilffs’ library and the string manipulation functions. Allocate space for the heap/stack.

▪ In Vivado, program the full bitstream for the [16 15] configuration: Config_cordic16_15.bit.

▪ Run the software application in SDK:
✓ With the CORDIC in format [16 15], the first dataset is tested. The results should match the expected output.
✓ Then, the software routine reconfigures the CORDIC to the format [16 14].
✓ With the CORDIC in format [16 14], the second dataset is tested. The results should match the expected output
✓ Then, the software routine reconfigures the CORDIC to the format [16 13].
✓ With the CORDIC in format [16 13], the third dataset is tested. The results should match the expected output.
✓ Then, the software routine reconfigures the CORDIC to the format [16 12].
✓ With the CORDIC in format [16 12], the fourth dataset is tested. The results should match the expected output.

http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Unit_7/axicordic_dprsys.zip
http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Tutorial%20-%20Unit%207.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Tutorial%20-%20Unit%207.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

4 Instructor: Daniel Llamocca

DYNAMIC ARITHMETIC: DYNAMIC DUAL FIXED-POINT ADDER

▪ Here, we use a 16-bit DFX Adder with overflow output. If overflow occurs, an interrupt is issued from the PL to the PS. The

PS then detects the interrupt and alters (at run-time) the DFX format of the adder (by modifying p0 and p1) in order to
avoid overflow. The figure depicts the self-reconfigurable embedded system.

DUAL FIXED-POINT ADDER SUBTRACTOR

▪ This combinational circuit computes DFX addition/subtraction. We note that the FX adder/subtractor does not depend on 𝑝0

and 𝑝 . Thus, we can modify the DFX format (𝑝0, 𝑝) by modifying only the pre-scaler and post-scaler. The figure depicts

how we partitioned the design into static and dynamic (run-time alterable) components.

PLPS

A
X

I
In

te
rc

o
n

n
e

c
t

ARM

memory

AXI 16-bit DFX Adder

RM

iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

S

USB /UART/

Ethernet

DevC

PCAP Interface

APU

Reconfigurable

Partition (RP)

Module 1

Module 2

Interrupt

In
te

rr
up

t
C

on
tr

ol

0

1

N
-1 Asig

AN-1

BN-1

0

1

Bsig

AN-1

BN-1 +

RANGE
DETECTOR

p0 N

AN-1

BN-1

CONTROL

0

1

2

N-1

N-1

N

overflow

RN-1 N

Rsig

N

N

N

0

1

2

AN-1

BN-1

0

p0-p1

p0-p1

p0-p1

MSB

discarded

PRE-SCALER POST-SCALER

o
v
e
rf

lo
w

N
-1

AN-1 BN-1 st

0 0 10

0 1 00

1 0 01

1 1 10

st

S

S_1

S_0

N

N

EC

sCTRL

E
C
T
R
L

f_num0

NA

NB

A
N

-1
..
.A

0
B

N
-1
..
.B

0

addsub

0

addsub
0 1

ERD

N
-1

RP

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

5 Instructor: Daniel Llamocca

AXI4-FULL INTERFACE

▪ For simplicity’s sake, we set 𝑁 = and 𝑑𝑑𝑠𝑢𝑏 = for the DFX Adder/Subtractor. This effectively makes a 16-bit DFX

adder. The figure below depicts the AXI4-Full interface. The interface also includes the output interrupt 𝑜𝑖 𝑡 signal.

Interrupt and Partial Reconfiguration Control:
▪ The AXI4-Full interface generates an interrupt signal 𝑜𝑖 𝑡:

✓ The oint signal is asserted when an overflow is detected (𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 =) and when data is valid on the output of the DFX

Adder (this happens when 𝑜𝑤𝑟𝑒 = , see FSM @ CLKFX).

✓ The interrupt signal remains asserted until the PS detects it. At this point, the ISR de-asserts the interrupt signal (so that
the signal does not continuously interrupt the PS). This is performed by writing a specific word (0x775599AA) on address

110100. Make sure that when writing to this peripheral, we must avoid writing on address 110100, otherwise it might
write an undesired word (0x775599AA) on the iFIFO.

▪ After 𝑜𝑖 𝑡 is de-asserted, we are free to execute dynamic partial reconfiguration (DPR).

✓ Usually, because of RP output toggling, the input data of oFIFO and the 𝑜𝑖 𝑡 block vary randomly. In this design, note

that during DPR, 𝑜𝑤𝑟𝑒 = (no word is written onto oFIFO); this prevents 𝑜𝑖 𝑡 from being altered unintendedly.

✓ After Partial Reconfiguration, we have to reset the FIFOs (in case data was still written between the overflow and the
start of DPR) and the PR FFs (nonexistent in this example). This is carried out by the signal 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡.

✓ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This one-cycle pulse resets both the RP FFs (non-existent in this example) and the FIFOs via a simple software

command (we write the word 0xAA995577 on address 101100). Make sure that when writing to this peripheral, we

must avoid writing on address 101100, otherwise it might trigger an undesired 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡.

▪ Unlike the case of the Pixel Processor, here we cannot use AXI reads to de-assert the interrupt: If we issue an AXI read,

we expect data from the FIFO to be read. If the FIFO is empty or if we read unintended data, the system will stall.

PR_reset_d
axi_awaddr (5..2)=1011

S_AXI_WDATA = 0xAA995577
PR_reset

oint

overflow=1
& owren=1

0x775599AA written
on address 1101

a b D E

0 0 X 0
0 1 0 1

1 0 1 1
1 1 0 1

ointoverflow

owren

axi_awaddr (5..2)=1101

S_AXI_WDATA = 0x775599AA

E

D
a

b

PR_reset

0xAA995577 written
on address 1011

Dynamic Partial
Reconfiguration

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

DFX ADDSUB

irden

owren

32 32

S_AXI_ARESETN

PR_reset

+

o
v
e
rf

lo
w

16 A

16 B

0

R
16

RP

oint

owren

axi_awaddr

S_AXI_WDATA

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

6 Instructor: Daniel Llamocca

Timing diagram for 𝒐𝒊𝒏𝒕
▪ We depict 𝑜𝑖 𝑡 assertion and de-assertion for a DFX adder in format [16 8 4]. If 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑜𝑤𝑟𝑒 = then 𝑜𝑖 𝑡 = .

During this time, other overflows are ignored. 𝑜𝑖 𝑡 is only de-asserted if we write 0x775599AA on 110100.

▪ In the example, data is read and written in bursts of four 32-bit words. The inputs A and B fit in a 32-bit word, while the

output overflow&R fit in a 32-bit word. The output is processed in one clock cycle and we can use 𝑜𝑤𝑟𝑒 = to indicate

valid data. Because of the design, the last data is kept on the inputs of the DFX adder until the next burst.
▪ We show a particular case when the last data in the first burst generates an overflow (note how 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = until the next

burst includes a case with no overflow). Also, note how the first word of the second burst also generates an overflow. To
detect this second overflow, we need 𝑜𝑤𝑟𝑒 = (as 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = during this entire time). In general, to properly detect
an overflow, we need: 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑜𝑤𝑟𝑒 = .

▪ Note that when 𝑜𝑖 𝑡 is asserted, any subsequent overflow is ignored until 𝑜𝑖 𝑡 is de-asserted. In the second burst, the first

and the third data generates and overflow, but only the first generates 𝑜𝑖 𝑡, an the second overflow is ignored.

AXI4-Full Interface Control
▪ The FSM @ S_AXI_ACLK is shown. As a

precaution, we do not allow writes on iFIFO for
addresses 101100 and 110100. For example,
when de-asserting 𝑜𝑖 𝑡, we do not want the
word 0x775599AA to be written on iFIFO.

✓ Since writes on address 101100 or 110100
are ignored, we have to be careful not to
attempt to write on those addresses and
then try to read as the system will freeze.
This is straightforward when using simple
write commands. But when using DMA,
make sure that the BurstType is set to FIX
(not to INCR or WRAP), otherwise the
address will be automatically increased and
it might reach 110100 or 101100, this will
cause the system to ignore some words.
This can be indicated in the DMA parameter

DmaCmd→ChanCtrl.DstInc. By default it is

1 (Inc), make it 0 (Fix).

▪ We also depict the FSM @ CLK_FX. This is a

very simple FSM as the DFX adder and its
interface is purely combinational.

▪ Finally, note that when writing software

applications that involve DMA (or large write
loops), the challenge is to spot where the
overflow occurred. Then if we reconfigure, we
need to re-start processing from a certain point.

0

1

iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

0

1

0

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

0
axi_rvalid

PR_reset

0

1

1

1

C0

axi_awaddr =
1101 or 1011

no

yes

1

S1

1

FSM at CLKFX

S_AXI_ARESETN=0

iempty

irden1,

owren1

0

S2

iempty=0
& ofull=0

no

yes

F1C2

clock

overflow

R B1C3 B1C7 B1C3 FACA B1C3 89BC

owren

A C000 C005 C000 FA2A C000 CAFE

B F1C3 F1C3 0A09 F1C3 BEBE

75AF

FBC4

FB1E

CAFE

BEBE

89BC

7FA1

7E52

7DF3

3FF1

3F04

87EF

C421

054A

C475

overflow

and owren

oint

...

...

...

...

...

...

...

...

...

...

...

...

PS de-asserts oint by writting

0x775599AA on address 1101

... ...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

7 Instructor: Daniel Llamocca

TESTING SCHEME

▪ We use two variations for the 16-bit DFX adder: formats [16 8 4] and [16 7 2].

▪ We show the 3 datasets (9 data points each) along with their DFX format:

FIRST DATASET SECOND DATASET

DFX format
Input Output

DFX format Input Output
A&B overflow&R A&B overflow&R

[16 8 4]

0x75AFFBC4

0xCAFEBEBE

0x7FA17E52

0x3FF13F04

0xC421054A

0xFA2A0A09

0xC000F1C3

0xD001F170

0xFAF8300A

0x0000FB1E

0x000089BC

0x00007DF3

0x000087EF

0x0000C475

0x0000FACA

0x0001B1C3

0x0000C171

0x00005F8A

[16 7 2]

0x75AFFBC4

0xCAFEBEBE

0x7FA17E52

0x3FF13F04

0xC421054A

0xFA2A0A09

0xC000F1C3

0xD001F170

0xFAF8300A

0x0000FB71

0x000089BC

0x00007DF3

0x000083F7

0x0000C44B

0x0000FA7A

0x0001B1C3

0x0000C171

0x0000FC78

THIRD DATASET

DFX format
Input Output
A&B overflow&R

[16 7 2]

0x78D75E20

0xF2BF8FAF

0x7FD07F29

0x1FF81F82

0xF10802A5

0x51500504

0xF000FC70

0xF400FC5C

0x57C01805

0x000056F7

0x0000826E

0x00007EF9

0x00003F7A

0x0000F11D

0x00005654

0x0000EC70

0x0000F05C

0x00006FC5

Test Procedure
▪ Extract the axiaddsub16_dprsys.zip. It includes three folders and the software application.

✓ /axiaddsub16_dr: Files for implementing the AXI4-Full DFX Add/Sub Peripheral.

✓ /axiaddsub16_dr_static: Files for implementing the static portion of the AXI4-Full DFX Add/Sub Peripheral.

✓ /dfxaddsub16_dyn: Folder structure for implementing the self-reconfigurable system.

 We include the file /Synth/Static/top_synth.dcp, which is the Checkpoint of the Static Region.

 We include the file /Sources/xdc/top.xdc. It contains the RP constraints and the PS constraints.

top.xdc = design_1_processing_system7_0_0.xdc + fplan.xdc.

 System tested on ZYBO Z7-10 and Vivado 2019.1. For other boards, you need to generate your own top.xdc and

top_synth.dcp files as per the procedure in Embedded System Design for PSoC Tutorial → Unit 7: DCT 2D.

✓ test_dfxadd_rp.c, xtra_func.h: Software application to test the self-reconfigurable system.

▪ Vivado Tcl Shell: source design_complete.tcl -notrace. This will generate the bitstreams (.bit). Follow the procedure

in Embedded System Design for PSoC Tutorial → Unit 7: DCT 2D to generate the byte-swapped .bin partial bitstream files.

Copy them onto the SD card and rename them to dfx6_2.bin, dfx7_2.bin, dfx8_4.bin.

▪ Create an embedded system (dfxaddsub16_drsys) for the AXI4-Full DFX Add/Sub Peripheral (mydfxaddsubintr). Create

an SDK project (add the software files). Enable the ‘xilffs’ library and the string manipulation functions. Allocate space for

the heap and stack.
▪ In Vivado, program the full bitstream for the [16 8 4] configuration: Config_dfxadd8_4.bit.

▪ Run the software application in SDK:
✓ With the DFX adder in format [16 8 4], the first dataset is tested. The results should match the shown output. An overflow

will be generated by data C000 + F1C3. This will generate an interrupt. The ISR only de-asserts the interrupt signal

oint. Once the 9 data points are processed (results retrieved), if the interrupt was issued, the software routine will

reconfigure the DFX adder to the format [16 7 2].
✓ With the DFX adder in format [16 7 2], the second dataset is tested. Note that these are the same binary values as in

the case for [16 8 4], but data is treated as in the format [16 7 2]. We do this to demonstrate that we successfully
performed reconfiguration (note that the output results are different). Here, overflow is also detected, an interrupt is

issued (the ISR de-asserts oint), but reconfiguration is not performed.

✓ With the DFX adder still in format [16 7 2], the third dataset is tested. These are the same real values of the first dataset
but represented in format [16 7 2]. Here, no overflow is generated.

✓ Finally, we unconditionally reconfigure the DFX adder back to the format [16 8 4] and run the first data set. An overflow

is detected, an interrupt is issued (the ISR de-asserts oint), but reconfiguration is not performed.

http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Unit_7/axiaddsub16_dprsys.zip
http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Tutorial%20-%20Unit%207.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Tutorial%20-%20Unit%207.pdf

